Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

An Investigation into the Feasibility of Using a Modern Gravity Gradient Instrument for Passive Aircraft Navigation and Terrain Avoidance

Abstract

Recently, Gravity Gradient Instruments (GGIs) - devices which measure the spatial derivatives of gravity, have improved remarkably due to development of accelerometer technologies. Specialized GGIs are currently flown on aircraft for geological purposes in the mining industries. As such, gravity gradient data is recorded in flight and detailed gradient maps are created after post mission processing. These maps, if stored in a database onboard an aircraft and combined with a GGI, form the basis for a covert navigation system using a map matching process. This system is completely passive and essentially unjammable. To determine feasibility of this method, a GGI sensor model was developed to investigate signal levels at representative flight conditions. Aircraft trajectories were simulated over modeled gravity gradient maps to determine the utility of flying modern GGIs in the roles of navigation and terrain avoidance. It was shown that the GGI based map-matching navigation system can likely provide a marked improvement over a non-aided INS but is limited by decreasing gravity gradient strength at higher altitudes, particularly over smooth terrain. Additionally, GGI output rate and bandwidth limitations, along with the inverse nature of the terrain avoidance problem, rendered GGI aided terrain avoidance unfeasible for the time being

Similar works

Full text

thumbnail-image

AFTI Scholar (Air Force Institute of Technology)

redirect
Last time updated on 02/01/2020

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.