Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Fast Modular Reduction for Large-Integer Multiplication

Abstract

The work contained in this thesis is a representation of the successful attempt to speed-up the modular reduction as an independent step of modular multiplication, which is the central operation in public-key cryptosystems. Based on the properties of Mersenne and Quasi-Mersenne primes, four distinct sets of moduli have been described, which are responsible for converting the single-precision multiplication prevalent in many of today\u27s techniques into an addition operation and a few simple shift operations. A novel algorithm has been proposed for modular folding. With the backing of the special moduli sets, the proposed algorithm is shown to outperform (speed-wise) the Modified Barrett algorithm by 80% for operands of length 700 bits, the least speed-up being around 70% for smaller operands, in the range of around 100 bits

Similar works

This paper was published in Scholarship at UWindsor.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.