Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Hardware Implementation of Bit-Parallel Finite Field Multipliers Based on Overlap-free Algorithm on FPGA

Abstract

Cryptography can be divided into two fundamentally different classes: symmetric-key and public-key. Compared with symmetric-key cryptography, where the complexity of the security system relies on a single key between receiver and sender, public-key cryptographic system using two separate but mathematically related keys. Finite field multiplication is a key operation used in all cryptographic systems relied on finite field arithmetic as it not only is computationally complex but also one of the most frequently used finite field operations. Karatsuba algorithm and its generalization are most often used to construct multiplication architectures with significantly improved in these decades. However, one of its optimized architecture called Overlap-free Karatsuba algorithm has been mentioned by fewer people and even its implementation on FPGA has not been mentioned by anyone. After completion of a detailed study of this specific algorithm, this thesis has proposed implementation of modified Overlap-free Karatsuba algorithm on Xilinx Spartan-605. Applied this algorithm and its specific architecture, reduced gates or shorten critical path will be achieved for the given value of n.Optimized multiplication architecture, generated from proposed modified Overlap-free Karatsuba algorithm and applied on FPGA board,over NIST recommended fields (n = 128), are presented and analysed in detail. Compared with existing works with sub-quadratic space and time complexities, the proposed modified algorithm is highly recommended module and have improved on both space and time complexities. At last, generalization of proposed modified algorithm is suitable for much larger size of finite fields, and improvements of FPGA itself have been discussed

Similar works

This paper was published in Scholarship at UWindsor.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.