Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

The Mechanical Properties of Single Fibrin Fibers

Abstract

Background: Blood clots perform the mechanical task of stemming the flow of blood. Objectives: To advance understanding and realistic modeling of blood clot behavior we determined the mechanical properties of the major structural component of blood clots, fibrin fibers. Methods: We used a combined atomic force microscopy (AFM)/fluorescence microscopy technique to determine key mechanical properties of single crosslinked and uncrosslinked fibrin fibers. Results and conclusions: Overall, full crosslinking renders fibers less extensible, stiffer, and less elastic than their uncrosslinked counterparts. All fibers showed stress relaxation behavior (time-dependent weakening) with a fast and a slow relaxation time, 2 and 52 s. In detail, crosslinked and uncrosslinked fibrin fibers can be stretched to 2.5 and 3.3 times their original length before rupturing. Crosslinking increased the stiffness of fibers by a factor of 2, as the total elastic modulus, E0, increased from 3.9 to 8.0 MPa and the relaxed, elastic modulus, E∞, increased from 1.9 to 4.0 MPa upon crosslinking. Moreover, fibers stiffened with increasing strain (strain hardening), as E0 increased by a factor of 1.9 (crosslinked) and 3.0 (uncrosslinked) at strains ε \u3e 110%. At low strains, the portion of dissipated energy per stretch cycle was small (\u3c 10%) for uncrosslinked fibers, but significant (approximately 40%) for crosslinked fibers. At strains \u3e 100%, all fiber types dissipated about 70% of the input energy. We propose a molecular model to explain our data. Our single fiber data can now also be used to construct a realistic, mechanical model of a fibrin network

Similar works

This paper was published in University of Richmond.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.