Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Strategic Communication between Prospect Theoretic Agents over a Gaussian Test Channel

Abstract

In this paper, we model a Stackelberg game in a simple Gaussian test channel where a human transmitter (leader) communicates a source message to a human receiver (follower). We model human decision making using prospect theory models proposed for continuous decision spaces. Assuming that the value function is the squared distortion at both the transmitter and the receiver, we analyze the effects of the weight functions at both the transmitter and the receiver on optimal communication strategies, namely encoding at the transmitter and decoding at the receiver, in the Stackelberg sense. We show that the optimal strategies for the behavioral agents in the Stackelberg sense are identical to those designed for unbiased agents. At the same time, we also show that the prospect-theoretic distortions at both the transmitter and the receiver are both larger than the expected distortion, thus making behavioral agents less contended than unbiased agents. Consequently, the presence of cognitive biases increases the need for transmission power in order to achieve a given distortion at both transmitter and receiver

Similar works

Full text

thumbnail-image

Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

redirect
Last time updated on 17/10/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.