Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Fiber inline pressure and acoustic sensor fabricated with femtosecond laser

Abstract

Pressure and acoustic measurements are required in many industrial applications such as down-hole oil well monitoring, structural heath monitoring, engine monitoring, study of aerodynamics, etc. Conventional sensors are difficult to apply due to the high temperature, electromagnetic-interference noise and limited space in such environments. Fiber optic sensors have been developed since the last century and have proved themselves good candidates in such harsh environment. This dissertation aims to design, develop and demonstrate miniaturized fiber pressure/acoustic sensors for harsh environment applications through femtosecond laser fabrication. Working towards this objective, the dissertation explored two types of fiber inline microsensors fabricated by femtosecond laser: an extrinsic Fabry-Perot interferometric (EFPI) sensor with silica diaphragm for pressure/acoustic sensing, and an intrinisic Fabry-Perot interferometer (IFPI) for temperature sensing. The scope of the dissertation work consists of device design, device modeling/simulation, laser fabrication system setups, signal processing method development and sensor performance evaluation and demonstration. This research work provides theoretical and experimental evidences that the femtosecond laser fabrication technique is a valid tool to fabricate miniaturized fiber optic pressure and temperature sensors which possess advantages over currently developed sensors --Abstract, page iii

Similar works

Full text

thumbnail-image

Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

redirect
Last time updated on 17/10/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.