Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Applications of simulation and optimization techniques in optimizing room and pillar mining systems

Abstract

The goal of this research was to apply simulation and optimization techniques in solving mine design and production sequencing problems in room and pillar mines (R&P). The specific objectives were to: (1) apply Discrete Event Simulation (DES) to determine the optimal width of coal R&P panels under specific mining conditions; (2) investigate if the shuttle car fleet size used to mine a particular panel width is optimal in different segments of the panel; (3) test the hypothesis that binary integer linear programming (BILP) can be used to account for mining risk in R&P long range mine production sequencing; and (4) test the hypothesis that heuristic pre-processing can be used to increase the computational efficiency of branch and cut solutions to the BILP problem of R&P mine sequencing. A DES model of an existing R&P mine was built, that is capable of evaluating the effect of variable panel width on the unit cost and productivity of the mining system. For the system and operating conditions evaluated, the result showed that a 17-entry panel is optimal. The result also showed that, for the 17-entry panel studied, four shuttle cars per continuous miner is optimal for 80% of the defined mining segments with three shuttle cars optimal for the other 20%. The research successfully incorporated risk management into the R&P production sequencing problem, modeling the problem as BILP with block aggregation to minimize computational complexity. Three pre-processing algorithms based on generating problem-specific cutting planes were developed and used to investigate whether heuristic pre-processing can increase computational efficiency. Although, in some instances, the implemented pre-processing algorithms improved computational efficiency, the overall computational times were higher due to the high cost of generating the cutting planes --Abstract, page iii

Similar works

Full text

thumbnail-image

Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

redirect
Last time updated on 17/10/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.