Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Thermomechanical analysis of rock asperity in fractures of enhanced geothermal systems

Abstract

Enhanced Geothermal Systems (EGS) offer great potential for dramatically expanding the use of geothermal energy and become a promising supplement for fossil energy. The EGS is to extract heat by creating a subsurface system to which cold water can be added through injection wells. Injected water is heated by contact with rock and returns to the surface through production well. Fracture provides the primary conduit for fluid flow and heat transfer in natural rock. Fracture is propped by fracture roughness with varying heights which is called asperity. The stability of asperity determines fracture aperture and hence imposes substantial effect on hydraulic conductivity and heat transfer efficiency in EGS. Firstly, two rough fracture surfaces are characterized by statistical method and fractal analysis. The asperity heights and enclosed aperture heights are described by probability density function before cold water is pumped into fracture. Secondly, when water injection and induced cooling occurs, the thermomechanical analysis of single asperity is studied by establishing an un-symmetric damage mechanics model. The deformation curve of asperity under thermal stress is determined. Thirdly, deformation of fracture with various asperities on it in response to thermal stress is analyzed by a new stratified continuum percolation model. This model incorporates the fracture surface characteristics and preceding deformation curve of asperity. The fracture closure and fracture stiffness can be accurately quantified by this model. In addition, the scaling invariance and multifractal parameters in this process are identified and validated with Monte Carlo simulation --Abstract, page iii

Similar works

Full text

thumbnail-image

Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

redirect
Last time updated on 26/02/2020

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.