Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Characterizing and modeling methods for power converters

Abstract

“Stable power delivery is becoming increasingly important in modern electronic devices, especially in applications with stringent requirements of its form factor. With the evolution of technology, the switching frequency in a power converter is pushed to a higher frequency range, e.g., several MHz or even higher, to decrease its size. However, the loss generated in the converter increases drastically due to the high switching frequency. In addition, a wide-band feedback controller is required to accommodate the high switching frequency in the converter. We focus on the characterization or modeling of the feedback control circuits and critical components in a switching power converter. A transient-simulation-oriented averaged continuous-time model is proposed to evaluate the transient output noise of a buck converter. The proposed modeling method is developed with time-domain waveforms, which enables a generalized modeling framework for current-mode controllers with constant and nonconstant switching frequencies. In this work, we mainly focus on characterization for two types of components: the switching components, including Si MOSFETs and GaN High-electron-mobility transistor (HEMT), and the magnetic core in an inductor. For the characterization of switching components, a set of test fixtures are designed to characterize the equivalent circuit of Si MOSFETs and GaN HEMTs. The frequency-dependent behaviors of Si MOSFETs are observed, which invalidate the conventional modeling methods for MOSFETs, especially for radiated emission (RE) prediction. For the characterization of magnetic cores, two different probe calibration methods are demonstrated. Accurate phase discrepancy characterization is allowed with the proposed method, which overcomes the main limitation in the conventional two-winding method. In addition, the proposed method supports wide-band loss measurement without resonance tuning, which supports core loss measurement for non-sinusoidal excitation”--Abstract, page iv

Similar works

Full text

thumbnail-image

Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

redirect
Last time updated on 16/07/2022

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.