Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Development of an optimization model to determine sampling levels

Abstract

As the complexity of multi-component products increases the quality of these products becomes increasingly difficult to control. The first step to manufacturing a quality product is making sure that the components of the product meet specifications. Product quality can be controlled through sampling inspection of the components. Two models were developed in this research to determine the optimal sampling levels for incoming lots containing parts for production and assembly of multi-component systems. The main objective of the first model is to minimize the expected cost that is associated with a nonconforming item reaching assembly. In this model the time available for inspection is limited. The main objective in the second model is to minimize total cost, which includes the appraisal cost (inspection cost) and the cost associated with nonconformance reaching assembly. In this model the time available is not a constraint. The distribution of defects is assumed to follow the binomial distribution, and the distribution of accepting the lot with defects follows the hypergeometric distribution. In addition, the inspection is considered to be accurate and, if a nonconforming item is found in the inspected sample, the entire lot is rejected. An example is given with real world data and the results are discussed --Abstract, page iv

Similar works

Full text

thumbnail-image

Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

redirect
Last time updated on 17/10/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.