Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Balanced Truncation Model Reduction of a Nonlinear Cable-Mass PDE System with Interior Damping

Abstract

We consider model order reduction of a nonlinear cable-mass system modeled by a 1D wave equation with interior damping and dynamic boundary conditions. The system is driven by a time dependent forcing input to a linear mass-spring system at one boundary. The goal of the model reduction is to produce a low order model that produces an accurate approximation to the displacement and velocity of the mass in the nonlinear mass-spring system at the opposite boundary. We first prove that the linearized and nonlinear unforced systems are well-posed and exponentially stable under certain conditions on the damping parameters, and then consider a balanced truncation method to generate the reduced order model (ROM) of the nonlinear input-output system. Little is known about model reduction of nonlinear input-output systems, and so we present detailed numerical experiments concerning the performance of the nonlinear ROM. We find that the ROM is accurate for many different combinations of model parameters

Similar works

Full text

thumbnail-image

Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

redirect
Last time updated on 17/10/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.