Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Semi-Supervised Spatial-Temporal Feature Learning on Anomaly-Based Network Intrusion Detection

Abstract

Due to a rapid increase in network traffic, it is growing more imperative to have systems that detect attacks that are both known and unknown to networks. Anomaly-based detection methods utilize deep learning techniques, including semi-supervised learning, in order to effectively detect these attacks. Semi-supervision is advantageous as it doesn\u27t fully depend on the labelling of network traffic data points, which may be a daunting task especially considering the amount of traffic data collected. Even though deep learning models such as the convolutional neural network have been integrated into a number of proposed network intrusion detection systems in recent years, little work has been done on spatial-temporal feature extraction for network intrusion anomaly detection using semi-supervised learning. This paper introduces Anomaly-CNVAE, a variational autoencoder where the encoding and decoding layers perform convolution and transpose convolution, respectively, in order to account for spatial feature extraction. In addition, in order to account for time-based features in the dataset, the proposed model utilizes 1D-CNN for the convolution operations. The performance of the model in network intrusion detection is evaluated against an autoencoder and a vanilla variational autoencoder. Results show that Anomaly-CNVAE significantly outperforms the other semi-supervised learning models with a 5-10 percent increase in evaluation metrics

Similar works

This paper was published in ScholarWorks@UARK.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.