Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Distinguishing between cognitive explanations of the problem size effect in mental arithmetic via representational similarity analysis of fMRI data

Abstract

Not all researchers interested in human behavior remain convinced that modern neuroimaging techniques have much to contribute to distinguishing between competing cognitive models for explaining human behavior, especially if one removes reverse inference from the table. Here, we took up this challenge in an attempt to distinguish between two competing accounts of the problem size effect (PSE), a robust finding in investigations of mathematical cognition. The PSE occurs when people solve arithmetic problems and indicates that numerically large problems are solved more slowly and erroneously than small problems. Neurocognitive explanations for the PSE can be categorized into representation-based and process-based views. Behavioral and traditional univariate neural measures have struggled to distinguish between these accounts. By contrast, a representational similarity analysis (RSA) approach with fMRI data provides competing hypotheses that can distinguish between accounts without recourse to reverse inference. To that end, our RSA (but not univariate) results provided clear evidence in favor of the representation-based over the process-based account of the PSE in multiplication; for addition, the results were less clear. Post-hoc similarity analysis distinguished still further between competing representation-based theoretical accounts. Namely, data favored the notion that individual multiplication problems are stored as individual memory traces sensitive to input frequency over a strictly magnitude-based account of memory encoding. Together, these results provide an example of how human neuroimaging evidence can directly inform cognitive-level explanations of a common behavioral phenomenon, the problem size effect. More broadly, these data may expand our understanding of calculation and memory systems in general.Not all researchers interested in human behavior remain convinced that modern neuroimaging techniques have much to contribute to distinguishing between competing cognitive models for explaining human behavior, especially if one removes reverse inference from the table. Here, we took up this challenge in an attempt to distinguish between two competing accounts of the problem size effect (PSE), a robust finding in investigations of mathematical cognition. The PSE occurs when people solve arithmetic problems and indicates that numerically large problems are solved more slowly and erroneously than small problems. Neurocognitive explanations for the PSE can be categorized into representation-based and process-based views. Behavioral and traditional univariate neural measures have struggled to distinguish between these accounts. By contrast, a representational similarity analysis (RSA) approach with fMRI data provides competing hypotheses that can distinguish between accounts without recourse to reverse inference. To that end, our RSA (but not univariate) results provided clear evidence in favor of the representation-based over the process-based account of the PSE in multiplication; for addition, the results were less clear. Post-hoc similarity analysis distinguished still further between competing representation-based theoretical accounts. Namely, data favored the notion that individual multiplication problems are stored as individual memory traces sensitive to input frequency over a strictly magnitude-based account of memory encoding. Together, these results provide an example of how human neuroimaging evidence can directly inform cognitive-level explanations of a common behavioral phenomenon, the problem size effect. More broadly, these data may expand our understanding of calculation and memory systems in general.A

Similar works

Full text

thumbnail-image

Archivsystem Ask23

redirect
Last time updated on 29/06/2023

This paper was published in Archivsystem Ask23.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.