Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Improving Online Railway Deadlock Detection using a Partial Order Reduction

Abstract

Although railway dispatching on large national networks is gradually becoming more computerized, there are still major obstacles to retrofitting (semi-)autonomous control systems. In addition to requiring extensive and detailed digitalization of infrastructure models and information systems, exact optimization for railway dispatching is computationally hard. Heuristic algorithms and manual overrides are likely to be required for semi-autonomous railway operations for the foreseeable future. In this context, being able to detect problems such as deadlocks can be a valuable part of a runtime verification system. If bound-for-deadlock situations are correctly recognized as early as possible, human operators will have more time to better plan for recovery operations. Deadlock detection may also be useful for verification in a feedback loop with a heuristic or semi-autonomous dispatching algorithm if the dispatching algorithm cannot itself guarantee a deadlock-free plan. We describe a SAT-based planning algorithm for online detection of bound-for-deadlock situations. The algorithm exploits parallel updates of train positions and a partial order reduction technique to significantly reduce the number of state transitions (and correspondingly, the sizes of the formulas) in the SAT instances needed to prove whether a deadlock situation is bound to happen in the future. Implementation source code and benchmark instances are supplied, and a direct comparison against another recent study demonstrates significant performance gains

Similar works

Full text

thumbnail-image

NORA - Norwegian Open Research Archives

redirect
Last time updated on 24/10/2022

This paper was published in NORA - Norwegian Open Research Archives.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.