Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

In vivo assessment of non-dopaminergic systems in Parkinson’s disease with Positron Emission Tomography

Abstract

Parkinson's disease (PD) is characterized by a progressive loss of nigrostriatal dopaminergic neurons. Non-dopaminergic neurotransmission is also impaired. Intraneuronal Lewy bodies, the pathological hallmark of PD, have been observed in serotoninergic, noradrenergic, and cholinergic neurons. Dysfunction of these systems could play a role in the occurrence of non-motor symptoms including fatigue. However, the extent of non-dopaminergic degeneration in PD, rates of its progression, and its contribution to the development of non-motor symptoms is unclear. First, I used 18F-dopa Positron Emission Tomography (PET), a marker of monoaminergic terminal function, to assess the involvement of dopaminergic, noradrenergic, and serotoninergic pathways in PD and in parkin-linked parkinsonism, a genetic form of PD. I found that parkin patients and PD patients have distinct patterns of monoaminergic involvement, with more widespread dysfunction in PD. In a second study, I used serial 18F-dopa PET to assess longitudinal changes in tracer uptake in brain monoaminergic structures over a 3-year period in a group of PD patients. I also assessed the relationship between striatal function decline and dysfunction in extra-striatal areas in the same patients. I found that the degeneration in extrastriatal monoaminergic structures in PD occurs independently from nigrostriatal degeneration and at a slower rate. Brain compensatory mechanisms disappear within the first years of disease. I then used 18F-dopa and 11C-DASB PET to investigate whether fatigue in PD is associated with dysfunction of dopaminergic/serotoninergic innervation. I found that PD patients with fatigue show severe loss of serotoninergic innervation in basal ganglia and limbic areas. Finally, I assessed the relationship between 18F-dopa uptake and measurements of serotonin transporter availability by 11C-DASB PET within brain serotoninergic structures and I provided evidence for the hypothesis that 18F-dopa PET can be used to evaluate the distribution and the function of serotoninergic systems in the brain of PD patients

Similar works

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.