Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Dataflow acceleration of Smith-Waterman with Traceback for high throughput Next Generation Sequencing

Abstract

Smith-Waterman algorithm is widely adopted bymost popular DNA sequence aligners. The inherent algorithmcomputational intensity and the vast amount of NGS input datait operates on, create a bottleneck in genomic analysis flows forshort-read alignment. FPGA architectures have been extensivelyleveraged to alleviate the problem, each one adopting a differentapproach. In existing solutions, effective co-design of the NGSshort-read alignment still remains an open issue, mainly due tonarrow view on real integration aspects, such as system widecommunication and accelerator call overheads. In this paper, wepropose a dataflow architecture for Smith-Waterman Matrix-filland Traceback alignment stages, to perform short-read alignmenton NGS data. The architectural decision of moving both stages onchip extinguishes the communication overhead, and coupled withradical software restructuring, allows for efficient integration intowidely-used Bowtie2 aligner. This approach delivers×18 speedupover the respective Bowtie2 standalone components, while our co-designed Bowtie2 demonstrates a 35% boost in performance

Similar works

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.