Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Integrated information theory in complex neural systems

Abstract

This thesis concerns Integrated Information Theory (IIT), a branch of information theory aimed at providing a fundamental theory of consciousness. At its core, lie two powerful intuitions: • That a system that is somehow more than the sum of its parts has non-zero integrated information, Φ; and • That a system with non-zero integrated information is conscious. The audacity of IIT’s claims about consciousness has (understandably) sparked vigorous criticism, and experimental evidence for IIT as a theory of consciousness remains scarce and indirect. Nevertheless, I argue that IIT still has merits as a theory of informational complexity within complexity science, leaving aside all claims about consciousness. In my work I follow this broad line of reasoning: showcasing applications where IIT yields rich analyses of complex systems, while critically examining its merits and limitations as a theory of consciousness. This thesis is divided in three parts. First, I describe three example applications of IIT to complex systems from the computational neuroscience literature (coupled oscillators, spiking neurons, and cellular automata), and develop novel Φ estimators to extend IIT’s range of applicability. Second, I show two important limitations of current IIT: that its axiomatic foundation is not specific enough to determine a unique measure of integrated information; and that available measures do not behave as predicted by the theory when applied to neurophysiological data. Finally, I present new theoretical developments aimed at alleviating some of IIT’s flaws. These are based on the concepts of partial information decomposition and lead to a unification of both theories, Integrated Information Decomposition, or ΦID. The thesis concludes with two experimental studies on M/EEG data, showing that a much simpler informational theory of consciousness – the entropic brain hypothesis – can yield valuable insight without the mathematical challenges brought by IIT.Open Acces

Similar works

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.