Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Colouring on hereditary graph classes

Abstract

The graph colouring problems ask if one can assign a colour from a palette of colour to every vertex of a graph so that any two adjacent vertices receive different colours. We call the resulting problem k-Colourability if the palette is of fixed size k, and Chromatic Number if the goal is to minimize the size of the palette. One of the earliest NP-completeness results states that 3-Colourability is NP-complete. Thereafter, numerous studies have been devoted to the graph colouring problems on special graph classes. For a fixed set of graphs H we denote F orb(H) by the set of graphs that exclude any graph H ∈ H as an induced subgraph. In this thesis, we explore the computational complexity of graph colouring problems on F orb(H) for different sets of H.In the first part of this thesis, we study k-Colourability on classes F orb(H) when H contains at most two graphs. We show that 4-Colourability and 5-Colourability are NPcomplete on F orb({P7}) and F orb({P6}), respectively, where Pt denotes a path of order t. These results leave open, for k ≥ 4, only the complexity of k-Colourability on F orb({Pt}) for k = 4 and t = 6. Secondly, we refine our NP-completeness results on k-Colourability to classes F orb({Cs, Pt}), where Cs denotes a cycle of length s. We prove new NP-completeness results for different combinations of values of k, s and t. Furthermore, we consider two common variants of the k-colouring problem, namely the list k-colouring problem and the pre-colouring extension of k-colouring problem. We show that in most cases these problems are also NP-complete on the class F orb({Cs, Pt}). Thirdly, we prove that the set of forbidden induced subgraph that characterizes the class of k-colourable (C4, P6)-free graphs is of finite size. For k ∈ {3, 4}, we obtain an explicit list of forbidden induced subgraphs and the first polynomial certifying algorithms for k-Colourability on F orb({C4, P6}).We also discuss one particular class F orb(H) when the size of H is infinite. We consider the intersection class of F orb({C4, C6, . . .}) and F orb(caps), where a cap is a graph obtained from an induced cycle by adding an additional vertex and making it adjacent to two adjacent vertices on the cycle. Our main result is a polynomial time 3/2-approximation algorithm for Chromatic Number on this class

Similar works

Full text

thumbnail-image

Simon Fraser University Institutional Repository

redirect
Last time updated on 12/11/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.