Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Prototype of Fault Adaptive Embedded Software for Large-Scale Real-Time Systems

Abstract

This paper describes a comprehensive prototype of large-scale fault adaptive embedded software developed for the proposed Fermilab BTeV high energy physics experiment. Lightweight self-optimizing agents embedded within Level 1 of the prototype are responsible for proactive and reactive monitoring and mitigation based on specified layers of competence. The agents are self-protecting, detecting cascading failures using a distributed approach. Adaptive, reconfigurable, and mobile objects for reliability are designed to be self-configuring to adapt automatically to dynamically changing environments. These objects provide a self-healing layer with the ability to discover, diagnose, and react to discontinuities in real-time processing. A generic modeling environment was developed to facilitate design and implementation of hardware resource specifications, application data flow, and failure mitigation strategies. Level 1 of the planned BTeV trigger system alone will consist of 2500 DSPs, so the number of components and intractable fault scenarios involved make it impossible to design an “expert system” that applies traditional centralized mitigative strategies based on rules capturing every possible system state. Instead, a distributed reactive approach is implemented using the tools and methodologies developed by the RealTime Embedded Systems group

Similar works

Full text

thumbnail-image

Syracuse University Research Facility and Collaborative Environment

redirect
Last time updated on 09/07/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.