Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies.

Abstract

Fabry-Perot-like resonant transmission of microwave radiation through a single subwavelength slit in a thick aluminum plate is quantified for a range of slit widths. Surprisingly, and in contrast to previous studies [e.g., Phys. Rev. Lett. 86, 5601 (2001)]], the resonant frequency exhibits a maximum as a function of slit width, decreasing as the slit width is reduced to less than 2% of the incident wavelength. This result accords with a new model based on coupled surface plasmon theory taking into account the finite conductivity, and hence permittivity, of the metal. This is contrary to a common assumption that metals can be treated as infinitely conducting in this regime

Similar works

Full text

thumbnail-image

Surrey Research Insight

redirect
Last time updated on 16/05/2021

This paper was published in Surrey Research Insight.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.