Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A formula for computing the exact determining number of Kneser graphs

Abstract

openA set of vertices S is a determining set of a graph G if every automorphism of G is uniquely determined by its action on S. This means that, for any two automorphisms s a and b of G, if for each s in S, we have a(s)=b(s), then a=b. The determining number of G is the minimum cardinality of a determining set of G. We study the determining number of Kneser graphs K_{n,k}. In this case, the determining number equals the base size of the symmetric group S_n of degree n in its action on the k-subsets of {1,...,n}, that is, the minimum number of k-subsets such that the only permutation of {1,...,n} that fixes them all is the identity. We prove a formula that allows us to compute the determining number, and hence the base size of this action, for every n and k.A set of vertices S is a determining set of a graph G if every automorphism of G is uniquely determined by its action on S. This means that, for any two automorphisms s a and b of G, if for each s in S, we have a(s)=b(s), then a=b. The determining number of G is the minimum cardinality of a determining set of G. We study the determining number of Kneser graphs K_{n,k}. In this case, the determining number equals the base size of the symmetric group S_n of degree n in its action on the k-subsets of {1,...,n}, that is, the minimum number of k-subsets such that the only permutation of {1,...,n} that fixes them all is the identity. We prove a formula that allows us to compute the determining number, and hence the base size of this action, for every n and k

Similar works

This paper was published in Padua Thesis and Dissertation Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.