Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

The Plus-Minus Davenport Constant of Finite Abelian Groups

Abstract

Let G be a finite abelian group, written additively. The Davenport constant, D(G), is the smallest positive number s such that any subset of the group G, with cardinality at least s, contains a non-trivial zero-subsum. We focus on a variation of the Davenport constant where we allow addition and subtraction in the non-trivial zero-subsum. This constant is called the plus-minus Davenport constant, D±(G). In the early 2000’s, Marchan, Ordaz, and Schmid proved that if the cardinality of G is less than or equal to 100, then the D±(G) is the floor of log2 n + 1, the basic upper bound, with few exceptions. The value of D±(G) is primarily known when the rank of G at most two and the cardinality of G is less than or equal to 100. In most cases, when D±(G) is known, D±(G)= floor(log2 |G|) + 1, with the exceptions of when G is a 3-group or a 5-group. We have studied a class of groups where the cardinality of G is a product of two prime powers. We look more closely to when the primes are 2 and 3, since the plus-minus Davenport constant of a 2-group attains the basic upper bound and while the plus-minus Davenport constant of a 3-group does not. To help us compute D±(G), we define the even plus-minus Davenport constant, De±(G), that guarantees a pm zero-subsum of even length. Let Cn be a cyclic group of order n. Then D(Cn) = n and D±(Cn) =floor( log2 n)+1. We have shown that De±(Cn) depends on whether n is even or odd. When n is even and not a power of 2, then De±(Cn) = floor(log2 n) + 2. When n = 2k , then De±(Cn) = floor(log2 n) + 1. The case when n is odd, De±(Cn) varies depending on how close n is to a power of 2. We have also shown that a subset containing the Jacobsthal numbers provides a subset of Cn that does not contain an even pm zero-subsum for certain values of n. When G is a finite abelian group, we provide bounds for De±(G). If D±(G) is known, then we given an improvement to the lower bound of De±(G). Additional improvements are shown when G is a direct sum an elementary abelian p-groups where p is prime. Then we compute the values of De±(Cr3 ) when 2 ≤ r ≤ 9 and provide an optimal lower bound for larger r. For the group C2 ⊕ Cr3 , D±(C2 ⊕ Cr3 ) = De±(Cr3 ). When r \u3c 10, D±(C2 ⊕ Cr3 ) does not attain the basic upper bound. We conjecture that as r increases, D±(C2 ⊕ Cr3 ) will not attain the basic upper bound. Now, let G = Cq2 ⊕ Cr3 . We compute the values of D±(G) for general q and small r. In this case, we show that if D±(G) attains the basic upper bound then so does De±(G). We then look at the case when the cardinality of G is a product of two prime powers and show improvements on the lower bound by using the fractional part of log2 p of each prime. Furthermore, we compute the values of D±(G) when 100 \u3c |G| ≤ 200, with some exceptions

Similar works

This paper was published in University of Kentucky.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.