Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Output–capacitorless segmented low–dropout voltage regulator with controlled pass transistors

Abstract

This article presents a low quiescent current output-capacitorless quasi-digital complementary metal-oxide-semiconductor (CMOS) low-dropout (LDO) voltage regulator with controlled pass transistors according to load demands. The pass transistor of the LDO is segmented into two smaller sizes based on a proposed segmentation criterion, which considers the maximum output voltage transient variations due to the load transient to different load current steps to find the suitable current boundary for segmentation. This criterion shows that low load conditions will cause more output variations and settling time if the pass transistor is used in its maximum size. Furthermore, this situation is the worst case for stability requirements of the LDO. Therefore, using one smaller transistor for low load currents and another one larger for higher currents, a proper trade-off between output variations, complexity, and power dissipation is achieved. The proposed LDO regulator has been designed and post-simulated in HSPICE in a 0.18¿µm CMOS process to supply a stable load current between 0 and 100¿mA with a 40¿pF on-chip output capacitor, while consuming 4.8¿µA quiescent current. The dropout voltage of the LDO is set to 200¿mV for 1.8¿V input voltage. The results reveal an improvement of approximately 53% and 25% on the output voltage variations and settling time, respectively.Postprint (author's final draft

Similar works

Full text

thumbnail-image

UPCommons. Portal del coneixement obert de la UPC

redirect
Last time updated on 21/05/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.