Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Cavitation dynamics and underwater radiated noise signature of a ship with a cavitating propeller

Abstract

The paper presents SSPA’s work in the EU project AQUO to predict underwater radiated noise (URN) generated by a coastal tanker with a cavitating propeller. A CFD method, consisting of a multi-phase Delayed Detached Eddy Simulation (DDES) and a Ffowcs Williams-Hawkings (FWH) acoustic analogy, is applied to predict the cavitation, pressure pulses and radiated noise for the ship at model and full scale. In comparison with the data obtained from the model test and full scale measurement, it is found that the predicted sheet cavity correlates quite well with the observed ones in the experiment and sea trial. Some success is made in predicting the collapse and rebound of tip vortex cavitation (TVC) at model scale, yet the extension of TVC is under-predicted.The predicted pressure pulses agree reasonably well with the measured ones at the first three harmonics, deviation becomes larger at higher harmonics.The tonal noise has fairly good agreement with the measured signal at both scales up to 5th harmonics. The simulation however under-predicts part of broadband noise that is caused by the TVC, mainly due to an under-resolution of the flow in the tip region and the propeller wake. The agreement with the data for the model scale case is slightly better than that for the full scale case

Similar works

Full text

thumbnail-image

UPCommons. Portal del coneixement obert de la UPC

redirect
Last time updated on 19/11/2020

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.