Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

SHARP: An adaptable, energy-efficient accelerator for recurrent neural networks

Abstract

The effectiveness of Recurrent Neural Networks (RNNs) for tasks such as Automatic Speech Recognition has fostered interest in RNN inference acceleration. Due to the recurrent nature and data dependencies of RNN computations, prior work has designed customized architectures specifically tailored to the computation pattern of RNN, getting high computation efficiency for certain chosen model sizes. However, given that the dimensionality of RNNs varies a lot for different tasks, it is crucial to generalize this efficiency to diverse configurations. In this work, we identify adaptiveness as a key feature that is missing from today’s RNN accelerators. In particular, we first show the problem of low resource utilization and low adaptiveness for the state-of-the-art RNN implementations on GPU, FPGA, and ASIC architectures. To solve these issues, we propose an intelligent tiled-based dispatching mechanism for increasing the adaptiveness of RNN computation, in order to efficiently handle the data dependencies. To do so, we propose Sharp as a hardware accelerator, which pipelines RNN computation using an effective scheduling scheme to hide most of the dependent serialization. Furthermore, Sharp employs dynamic reconfigurable architecture to adapt to the model’s characteristics. Sharp achieves 2×, 2.8×, and 82× speedups on average, considering different RNN models and resource budgets, compared to the state-of-the-art ASIC, FPGA, and GPU implementations, respectively. Furthermore, we provide significant energy reduction with respect to the previous solutions, due to the low power dissipation of Sharp (321 GFLOPS/Watt).This work has been supported by the CoCoUnit ERC Advanced Grant of the EU’s Horizon 2020 program (grant No 833057), the Spanish State Research Agency (MCIN/AEI) under grant PID2020-113172RB-I00, and the ICREA Academia program.Peer ReviewedPostprint (author's final draft

Similar works

Full text

thumbnail-image

UPCommons. Portal del coneixement obert de la UPC

redirect
Last time updated on 09/08/2023

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.