Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Worm epidemics in vehicular networks

Abstract

Connected vehicles promise to enable a wide range of new automotive services that will improve road safety, ease traffic management, and make the overall travel experience more enjoyable. However, they also open significant new surfaces for attacks on the electronics that control most of modern vehicle operations. In particular, the emergence of vehicle-to-vehicle (V2V) communication risks to lay fertile ground for self-propagating mobile malware that targets automobile environments. In this work, we perform a first study on the dynamics of vehicular malware epidemics in a large-scale road network, and unveil how a reasonably fast worm can easily infect thousands of vehicles in minutes. We determine how such dynamics are affected by a number of parameters, including the diffusion of the vulnerability, the penetration ratio and range of the V2V communication technology, or the worm self-propagation mechanism. We also propose a simple yet very effective numerical model of the worm spreading process, and prove it to be able to mimic the results of computationally expensive network simulations. Finally, we leverage the model to characterize the dangerousness of the geographical location where the worm is first injected, as well as for efficient containment of the epidemics through the cellular network.Peer ReviewedPostprint (author’s final draft

Similar works

Full text

thumbnail-image

UPCommons. Portal del coneixement obert de la UPC

redirect
Last time updated on 16/06/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.