Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Unrestricted State Complexity Of Binary Operations On Regular And Ideal Languages

Abstract

This is an Accepted Manuscript of an article published by Institut für Informatik in Journal of Automata, Languages and Combinatorics on 2017-08-27, available online: http://www.jalc.de/issues/issue_22_1-3/content.htmlWe study the state complexity of binary operations on regular languages over different alphabets. It is known that if L′m and Ln are languages of state complexities m and n, respectively, and restricted to the same alphabet, the state complexity of any binary boolean operation on L′m and Ln is mn, and that of product (concatenation) is m2n − 2n−1. In contrast to this, we show that if L′m and Ln are over different alphabets, the state complexity of union and symmetric difference is (m + 1)(n + 1), that of difference is mn + m, that of intersection is mn, and that of product is m2n + 2n−1. We also study unrestricted complexity of binary operations in the classes of regular right, left, and two-sided ideals, and derive tight upper bounds. The bounds for product of the unrestricted cases (with the bounds for the restricted cases in parentheses) are as follows: right ideals m + 2n−2 + 2n−1 + 1 (m + 2n−2); left ideals mn + m + n (m + n − 1); two-sided ideals m+2n (m+n−1). The state complexities of boolean operations on all three types of ideals are the same as those of arbitrary regular languages, whereas that is not the case if the alphabets of the arguments are the same. Finally, we update the known results about most complex regular, right-ideal, left-ideal, and two-sided-ideal languages to include the unrestricted cases.Natural Sciences and Engineering Research Council of Canada grant No. OGP000087

Similar works

Full text

thumbnail-image

University of Waterloo's Institutional Repository

redirect
Last time updated on 01/01/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.