Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Topology-Awareness and Re-optimization Mechanism for Virtual Network Embedding

Abstract

Embedding of virtual network (VN) requests on top of a shared physical network poses an intriguing combination of theoretical and practical challenges. Two major problems with the state-of-the-art VN embedding algorithms are their indifference to the underlying substrate topology and their lack of re-optimization mechanisms for already embedded VN requests. We argue that topology-aware embedding together with re-optimization mechanisms can improve the performance of the previous VN embedding algorithms in terms of acceptance ratio and load balancing. The major contributions of this thesis are twofold: (1) we present a mechanism to differentiate among resources based on their importance in the substrate topology, and (2) we propose a set of algorithms for re-optimizing and re-embedding initially-rejected VN requests after fixing their bottleneck requirements. Through extensive simulations, we show that not only our techniques improve the acceptance ratio, but they also provide the added benefit of balancing load better than previous proposals. The metrics we use to validate our techniques are improvement in acceptance ratio, revenue-cost ratio, incurred cost, and distribution of utilization

Similar works

Full text

thumbnail-image

University of Waterloo's Institutional Repository

redirect
Last time updated on 01/01/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.