Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Efficient Resource Management for Cloud Computing Environments

Abstract

Cloud computing has recently gained popularity as a cost-effective model for hosting and delivering services over the Internet. In a cloud computing environment, a cloud provider packages its physical resources in data centers into virtual resources and offers them to service providers using a pay-as-you-go pricing model. Meanwhile, a service provider uses the rented virtual resources to host its services. This large-scale multi-tenant architecture of cloud computing systems raises key challenges regarding how data centers resources should be controlled and managed by both service and cloud providers. This thesis addresses several key challenges pertaining to resource management in cloud environments. From the perspective of service providers, we address the problem of selecting appropriate data centers for service hosting with consideration of resource price, service quality as well as dynamic reconfiguration costs. From the perspective of cloud providers, as it has been reported that workload in real data centers can be typically divided into server-based applications and MapReduce applications with different performance and scheduling criteria, we provide separate resource management solutions for each type of workloads. For server-based applications, we provide a dynamic capacity provisioning scheme that dynamically adjusts the number of active servers to achieve the best trade-off between energy savings and scheduling delay, while considering heterogeneous resource characteristics of both workload and physical machines. For MapReduce applications, we first analyzed task run-time resource consumption of a large variety of MapReduce jobs and discovered it can vary significantly over-time, depending on the phase the task is currently executing. We then present a novel scheduling algorithm that controls task execution at the level of phases with the aim of improving both job running time and resource utilization. Through detailed simulations and experiments using real cloud clusters, we have found our proposed solutions achieve substantial gain compared to current state-of-art resource management solutions, and therefore have strong implications in the design of real cloud resource management systems in practice

Similar works

Full text

thumbnail-image

University of Waterloo's Institutional Repository

redirect
Last time updated on 01/01/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.