Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Microstructure modelling of hot deformation of A1-1%Mg alloy

Abstract

This study presents the application of the finite element method and intelligent systems techniques to the prediction of microstructural mapping for aluminium alloys. Here, the material within each finite element is defined using a hybrid model. The hybrid model is based on neuro-fuzzy and physically based components and it has been combined with the finite element technique. The model simulates the evolution of the internal state variables (i.e. dislocation density, subgrain size and subgrain boundary misorientation) and their effect on the recrystallisation behaviour of the stock. This paper presents the theory behind the model development, the integration between the numerical techniques, and the application of the technique to a hot rolling operation using aluminium, 1 wt% magnesium alloy. Furthermore, experimental data from plane strain compression (PSC) tests and rolling are used to validate the modelling outcome. The results show that the recrystallisation kinetics agree well with the experimental results for different annealing times. This hybrid approach has proved to be more accurate than conventional methods using empirical equations

Similar works

Full text

thumbnail-image

Swinburne Research Bank

redirect
Last time updated on 26/05/2016

This paper was published in Swinburne Research Bank.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.