Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Clique-Based Separators for Geometric Intersection Graphs

Abstract

Let F be a set of n objects in the plane and let G^x(F) be its intersection graph. A balanced clique-based separator of G^x(F) is a set S consisting of cliques whose removal partitions G^x(F) into components of size at most δn, for some fixed constant δ < 1. The weight of a clique-based separator is defined as ∑_{C ∈ S} log (|C|+1). Recently De Berg et al. (SICOMP 2020) proved that if S consists of convex fat objects, then G^x(F) admits a balanced clique-based separator of weight O(√n). We extend this result in several directions, obtaining the following results. - Map graphs admit a balanced clique-based separator of weight O(√n), which is tight in the worst case. - Intersection graphs of pseudo-disks admit a balanced clique-based separator of weight O(n^{2/3} log n). If the pseudo-disks are polygonal and of total complexity O(n) then the weight of the separator improves to O(√n log n). - Intersection graphs of geodesic disks inside a simple polygon admit a balanced clique-based separator of weight O(n^{2/3} log n). - Visibility-restricted unit-disk graphs in a polygonal domain with r reflex vertices admit a balanced clique-based separator of weight O(√n + r log(n/r)), which is tight in the worst case. These results immediately imply sub-exponential algorithms for MAXIMUM INDEPENDENT SET (and, hence, VERTEX COVER), for FEEDBACK VERTEX SET, and for q-Coloring for constant q in these graph classes.ISSN:1868-896

Similar works

Full text

thumbnail-image

Repository for Publications and Research Data

redirect
Last time updated on 15/12/2021

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.