Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

The adjacency matrices of complete and nutful graphs

Abstract

A real symmetric matrix G with zero entries on its diagonal is an adjacency matrix associated with a graph G (with weighted edges and no loops) if and only if the non-zero entries correspond to edges of G. An adjacency matrix G belongs to a generalized-nut graph G if every entry in a vector in the nullspace of G is non-zero. A graph G is termed NSSD if it corresponds to a non-singular adjacency matrix G with a singular deck {G- v}, where G- v is the submatrix obtained from G by deleting the vth row and column. An NSSD G whose deck consists of generalized- nut graphs with respect to G is referred to as a G-nutful graph. We prove that a G-nutful NSSD is equivalent to having a NSSD with G-1 as the adjacency matrix of the complete graph. If the entries of G for a G-nutful graph are restricted to 0 or 1, then the graph is known as nuciferous, a concept that has arisen in the context of the quantum mechanical theory of the conductivity of non-singular Carbon molecules according to the SSP model. We characterize nuciferous graphs by their inverse and the nullities of their one- and two-vertex deleted subgraphs. We show that a G-nutful graph is a NSSD which is either K2 or has no pendant edges. Moreover, we reconstruct a labelled NSSD either from the nullspace generators of the ordered one-vertex deleted subgraphs or from the determinants of the ordered two-vertex deleted subgraphs.peer-reviewe

Similar works

This paper was published in OAR@UM.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.