Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Unrolling of Graph Total Variation for Image Denoising

Abstract

While deep learning have enabled effective solutions in image denoising, in general their implementations overly rely on training data and require tuning of a large parameter set. In this thesis, a hybrid design that combines graph signal filtering with feature learning is proposed. It utilizes interpretable analytical low-pass graph filters and employs 80\% fewer parameters than a state-of-the-art DL denoising scheme called DnCNN. Specifically, to construct a graph for graph spectral filtering, a CNN is used to learn features per pixel, then feature distances are computed to establish edge weights. Given a constructed graph, a convex optimization problem for denoising using a graph total variation prior is formulated. Its solution is interpreted in an iterative procedure as a graph low-pass filter with an analytical frequency response. For fast implementation, this response is realized by Lanczos approximation. This method outperformed DnCNN by up to 3dB in PSNR in statistical mistmatch case

Similar works

This paper was published in YorkSpace.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.