Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Multigrid waveform relaxation for the time-fractional heat equation

Abstract

In this work, we propose an efficient and robust multigrid method for solving the time-fractional heat equation. Due to the nonlocal property of fractional differential operators, numerical methods usually generate systems of equations for which the coefficient matrix is dense. Therefore, the design of efficient solvers for the numerical simulation of these problems is a difficult task. We develop a parallel-in-time multigrid algorithm based on the waveform relaxation approach, whose application to time-fractional problems seems very natural due to the fact that the fractional derivative at each spatial point depends on the values of the function at this point at all earlier times. Exploiting the Toeplitz-like structure of the coefficient matrix, the proposed multigrid waveform relaxation method has a computational cost of O(NMlog(M))O(NM\log(M)) operations, where MM is the number of time steps and NN is the number of spatial grid points. A semialgebraic mode analysis is also developed to theoretically confirm the good results obtained. Several numerical experiments, including examples with nonsmooth solutions and a nonlinear problem with applications in porous media, are presented

Similar works

This paper was published in Repositorio Universidad de Zaragoza.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.