Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Downlink Scheduling and Resource Allocation for 5G MIMO-Multicarrier: OFDM vs FBMC/OQAM

Abstract

The definition of the next generation of wireless communications, so-called 5G networks, is currently underway. Among many technical decisions, one that is particularly fundamental is the choice of the physical layer modulation format and waveform, an issue for which several alternatives have been proposed. Two of the most promising candidates are: 1) orthogonal frequency division multiple (OFDM), a conservative proposal that builds upon the huge legacy of 4G networks and 2) filter bank multicarrier/offset quadrature amplitude modulation (FBMC/OQAM), a progressive approach that in frequency selective channels sacrifices subcarrier orthogonality in lieu of an increased spectral efficiency. The comparative merits of OFDM and FBMC/OQAM have been well investigated over the last few years but mostly, from a purely physical layer point of view and largely neglecting how the physical layer performance translates into user-relevant metrics at the upper-layers. This paper aims at presenting a comprehensive comparison of both modulation formats in terms of practical network indicators, such as goodput, delay, fairness, and service coverage, and under operational conditions that can be envisaged to be realistic in 5G deployments. To this end, a unifying cross-layer framework is proposed that encompasses the downlink scheduling and resource allocation procedures and that builds upon a model of the queueing process at the data-link control layer and a physical layer abstraction that can be chosen to model either OFDM or FBMC/OQAM. Extensive numerical results conclusively demonstrate that most of the a priori advantages of FBMC/OQAM over OFDM do indeed translate into improved network indicators, that is, the increase in spectral efficiency achieved by FBMC/OQAM makes up for the distortion caused by the loss of orthogonality.Grant numbers :This work has been supported in part by the Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional (AEI/FEDER, UE) under projects ELISA (subprojects TEC2014-59255-C3-1-R and TEC2014-59255-C3-2-R). © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Similar works

Full text

thumbnail-image

NEUROSURGERY ENTHUSIASTIC WOMEN SOCIETY

redirect
Last time updated on 03/12/2022

This paper was published in NEUROSURGERY ENTHUSIASTIC WOMEN SOCIETY.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.