Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Coordination strategies in distribution networks considering multiple aggregators and high penetration of electric vehicles

Abstract

Given the current state of the society in which we live, in terms of energy pollution, several objectives have been set to try to reduce environmental problems. Some of these goals include an exponential increase in production through renewable energy, and Electric Vehicles (EVs) circulating on roads. Due to this high penetration of distributed energy resources in the electricity grid, several problems may exist: grid congestion, causing severe energy systems damage. Innovative coordination strategies must be developed to mitigate these situations. This paper proposes a methodology to minimize this problem in a smart grid with high penetration of Distributed Generation (DG) and EVs, taking into account multiple aggregators. Initially, the proposed model calculates each aggregator’s profit through some business models and analyzes the network without any congestion strategy. This analysis is then done in the presence of Distribution Locational Marginal Pricing (DLMPs), which the aggregator receives from the Distributed System Operator (DSO). The DSO gets these prices after running the Optimal Power Flow (OPF), where these prices involve the market price, the cost of losses, and the cost of congestion at a given point in the network. Here the aggregators react according to these costs, such as trying to buy flexibility from their customers. In this study, the results prove that dynamic prices are more viable for the power grid by reducing congestion by analyzing each aggregator’s profit.This research has received funding from FEDER funds through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under Project POCI-01-0145-FEDER-028983; by National Funds through the FCT Portuguese Foundation for Science and Technology, under Projects PTDC/EEIEEE /28983/2017(CENERGETIC), CEECIND/02814/2017, and UIDB/000760/2020

Similar works

Full text

thumbnail-image

ZENODO

redirect
Last time updated on 08/08/2023

This paper was published in ZENODO.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.