Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Using coupled micropillar compression and micro-Laue diffraction to investigate deformation mechanisms in a complex metallic alloy Al13Co4

Abstract

In this investigation, we have used in-situ micro-Laue diffraction combined with micropillar compression of focused ion beam milled Al13Co4 complex metallic alloy to study the evolution of deformation in Al13Co4. Streaking of the Laue spots showed that the onset of plastic flow occured at stresses as low as 0.8 GPa, although macroscopic yield only becomes apparent at 2 GPa. The measured misorientations, obtained from peak splitting, enabled the geometrically necessary dislocation density to be estimated as 1.1 x 1013 m-2

Similar works

Full text

thumbnail-image

NEUROSURGERY ENTHUSIASTIC WOMEN SOCIETY

redirect
Last time updated on 03/12/2022

This paper was published in NEUROSURGERY ENTHUSIASTIC WOMEN SOCIETY.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.