Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Multispectral Image Analysis Using Random Forest

Abstract

Classical methods for classification of pixels in multispectral images include supervised classifiers such as the maximum-likelihood classifier, neural network classifiers, fuzzy neural networks, support vector machines, and decision trees. Recently, there has been an increase of interest in ensemble learning – a method that generates many classifiers and aggregates their results. Breiman proposed Random Forestin 2001 for classification and clustering. Random Forest grows many decision trees for classification. To classify a new object, the input vector is run through each decision tree in the forest. Each tree gives a classification. The forest chooses the classification having the most votes. Random Forest provides a robust algorithm for classifying large datasets. The potential of Random Forest is not been explored in analyzing multispectral satellite images. To evaluate the performance of Random Forest, we classified multispectral images using various classifiers such as the maximum likelihood classifier, neural network, support vector machine (SVM), and Random Forest and compare their results

Similar works

Full text

thumbnail-image

NEUROSURGERY ENTHUSIASTIC WOMEN SOCIETY

redirect
Last time updated on 02/12/2022

This paper was published in NEUROSURGERY ENTHUSIASTIC WOMEN SOCIETY.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.